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This paper concerns the stability of the von Kármán swirling flow between coaxial
disks. A linear stability analysis shows that for moderate Reynolds numbers (Re � 50)
and for any rotation ratio s ∈ [−1, 1[ there is a radial location rpc from which the self-
similar von Kármán solutions become unstable to axisymmetric disturbances. When
the disks are moderately counter-rotating (s ∈ [−0.56, 0[), two different disturbances
(types I and II) appear at the same critical radius. A spatio-temporal analysis
shows that, at a very short distance from this critical radius, the first disturbance
(type I) becomes absolutely unstable whereas the second (type II) remains convectively
unstable. Outside this range of aspect ratios, all the disturbances examined are found
to be absolutely unstable. The flow between two coaxial rotating disks enclosed in a
stationary sidewall is then numerically investigated. For sufficently large aspect ratios,
the cavity flow is found to be globally unstable for axisymmetric disturbances similar
to that calculated with the self-similar solutions. The flow in cavities with aspect
ratios smaller than R ≈ 10.3 (and Re � 50) is not destabilized by these axisymmetric
disturbances. An experimental investigation conducted for a cavity with aspect ratio
R = 15 confirms the numerical results. Axisymmetric disturbances similar to those
calculated for the same cavity are detected and three-dimensional modes can also be
observed near the sidewall.

1. Introduction
It is unnecessary to point out the importance of the flows in rotating cavities

because of the many industrial configurations in which they are encountered (e.g.
turbo-machinery) and their fundamental interest (e.g. models for three-dimensional
flows). Flows between rotating disks can be represented by self-similar functions (in
the case of infinite disks) which are exact solutions to the complete Navier–Stokes
equations for steady laminar flow (von Kármán 1921). These self-similar solutions
have been calculated for many configurations between two coaxial infinite disks: one
stationary and one rotating disk, and two co- or counter-rotating disks. Self-similar
solutions can also be used to analyse the structures of the boundary layers near the
disks (Bödewadt 1940; Batchelor 1951; Stewartson 1953) which constitute a good
model for the study of swept-wing boundary layers. In these high-Reynolds-number
cases, many authors have shown the existence of multiple solutions (e.g. Mellor,
Chapple & Stokes 1968; Nguyen, Ribault & Florent 1975; Holodniok, Kubicek &
Hlavacek 1977, 1981) and the question of their existence (independently of their
stability) arose naturally for the flows between rotating disks in cavities.
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Following Gregory, Stuart & Walker (1955), many authors have studied the stability
of the flow in the vicinity of an infinite rotating disk. It has been shown that the
first instability, of inflectional type, appears in the shape of quasi-stationary spirals
in the frame of the disk. Other works have confirmed and clarified the nature of
this instability in the case of two rotating disks (e.g. Faller & Kaylor 1966; Szeri
et al. 1983a, b). A review of numerous studies up to the 1980s devoted to boundary
layers of the rotating disks can be found in Reed & Saric (1989) or Owen & Rogers
(1989). Moreover Szeto (1978) described the many existing solutions as a function
of the Reynolds number and the rotation ratio s for two disks of infinite extent. In
order to do this, linear stability analysis of the von Kármán self-similar solutions was
performed with equally self-similar disturbances. He showed a stability diagram with
the different solutions as a function of the Reynolds number Re � 1000 (Re = ω∗e∗2/ν∗

where ω∗ is the tangential velocity of the upper disk, e∗ the gap width between the two
disks and ν∗ the kinematic viscosity) and of the rotation ratio between the two disks
(|s| � 1). For all values of the rotation ratio s, the von Kármán steady axisymmetric
solution is found to be stable for Re � 55 towards self-similar disturbances. A linear
stability analysis of the flow between a rotating and a stationary disk was conducted
by San’kov & Smirnov (1992). Following the studies of Szeri et al. (1983b) and using
the similarity solution as basic flow, they found several instabilities and that for low
Re values the most dangerous disturbances are axisymmetric. They argued that there
is always a critical rpc = r∗/e∗ radius beyond which the flow becomes unstable and

concluded that as Re tends towards zero, rpc � 7820Re2.
A very important theoretical study on the laminar–turbulent transition of the

boundary layer of a rotating disk was conducted by Lingwood (1995). By applying
the Briggs–Bers criterion (Briggs 1964; Bers 1975; Huerre & Monkewitz 1990) it is
shown that above a local Reynolds number of Rep = 510 (where Rep = r∗

pL∗ω∗/ν∗

with L∗ =
√

ν∗/ω∗ the boundary-layer thickness and r∗
p the local radius) an absolutely

unstable disturbance appeared which caused the onset of transition to turbulence.
This theoretical value of the transitional local Reynolds number is very close to
the value generally observed in experiments, around 513. It is also shown that this
absolute instability has an inertial origin and comes neither from the Coriolis effects
nor from streamline curvature effects. These theoretical results were confirmed by the
experimental study subsequently carried out by Lingwood (1996). The evolution of
disturbances introduced locally into the boundary layer over a disk rotating in a still
medium is examined. When an impulse at a radius lower than the value at which the
laminar–turbulent transition is observed disturbs the boundary layer, a wave packet
is convected outwards. Among the excited frequencies emerge two families predicted
by linear-stability theory and convected at the same speed towards the periphery.
However, the propagation velocity of the trailing edge of the wave packet decreases
as the radius increases, until it reaches zero when a local Reynolds number of 510
is attained, thus defining the critical local radius where the flow becomes absolutely
unstable. Lingwood then explains the transition to turbulence in the boundary layer
of a rotating disk by an accumulation of energy at this critical radius from which the
flow becomes absolutely unstable. A review of works devoted to rotating disks and
their boundary layers can be found in Saric, Reed & White (2003).

Many other experimental studies have been devoted to the stability of the flows
between coaxial disks. The destabilization of the basic flow between a stationary
and a rotating disk enclosed by a stationary sidewall was particularly well studied
by Gauthier, Gondret & Rabaud (1999); Schouveiler et al. (1999, 2001). The
first instability observed appears as circular rolls, travelling towards the centre,
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in the boundary layer of the stationary disk, when the Ekman and Bödewadt
boundary layers are clearly separate. It appears for relatively high-Reynolds-number
values, depending on the aspect ratio R = R∗/e∗ (where R∗ is the radius of the
disks); e.g. Re ≈ 75 and R = 20.9 in Gauthier et al. (1999). It was shown that this
primary supercritical bifurcation occurs for increasing Reynolds number values while
preserving axisymmetry and it was suggested that this is due to the shear instability
of the radial velocity profile. These studies were then extended to the flow between
two co- or counter-rotating disks enclosed in a cavity (e.g. Iglesias & Humphrey
1998; Gauthier et al. 2002). Gauthier et al. (2002) present an experimental diagram
of the various modes observed as a function of the relative rotation of each of the
two disks for a high aspect ratio (R = 20.9). The cases of co-rotating and slightly
counter-rotating disks behave as the rather similar and better known rotor–stator
case (Gauthier et al. 1999; Serre, Crespo del Arco & Bontoux 2001), from the point
of view of the basic flow on the one hand and the form of the first instability, which
is always axisymmetric, on the other. The strongly counter-rotating case, however, is
more complex and leads to structures of a new type, named negative spirals, which
are described. For the exactly counter-rotating case, the first instability is observed
even from Re = 20, i.e. well before the formation of the boundary layers near each
of the two disks. It should be noted that only Gauthier et al. (2002) observe the
destabilization of the basic flow by three-dimensional structures (but in the strongly
counter-rotating case only) and also that their experimental device has a sidewall
which moves with the higher disk and gives a particular basic flow.

At the same time, the stability of the flow in a cavity was studied numerically
with axisymmetric codes. This assumption of axisymmetry is indeed justified by
the experimental observations quoted previously which show that the basic flow is
initially destabilized by circular waves (at least when the rotation ratio s is not too
close to −1, if one takes into account the observations of Gauthier et al. 2002). In a
certain number of studies, direct numerical simulation by means of spectral methods
has been used (see Hill & Ball 1997; Cousin-Rittemard, Daube & Le Quéré 1998;
1999). The transitions are generally observed to occur by means of Hopf bifurcation.
In the rotor–stator case (s = 0), Cousin-Rittemard et al. (1998) showed that in the
boundary-layer regime, the basic flow lost stability via various scenarios depending
on the curvature effects (the latter are governed by the inner to outer radii ratio
δ = Ri/R with δ → 1 for a Cartesian cavity and δ = 0 for disk systems including
the rotation axis). These results were then confirmed by three-dimensional direct
numerical simulations. Several types of instability were listed between a stationary
and a rotating disk in a cylindrical cavity including the rotation axis (δ = 0) and in
an annular cavity radially confined by a shaft and a shroud (δ �= 0), in particular
by Serre et al. (2001). For moderate aspect ratios, the influence of the curvature
and confinement effects was evaluated by varying the geometric parameters δ and
R. The basic flow is stationary and axisymmetric, of Batchelor type with a core of
inviscid fluid in the centre of the cavity. The results confirm those already published,
both experimental and numerical axisymmetric. The basic solution is found to be
stable up to a critical Reynolds number Rec such as Rec R1.8 = 104. Beyond this,
it is replaced by an unsteady solution with axisymmetric and/or three-dimensional
structures, according to the value of the parameters. The numerical study of Nore
et al. (2003) describes the first stages of the transition to turbulence in exactly counter-
rotating cavities (s = −1) with a very small aspect ratio (R = 0.5). The computational
code, also unsteady and three-dimensional, shows that the axisymmetric basic flow
becomes unstable for notably high-Reynolds-number values (Re/4 = 349), under the
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effect of a Kelvin–Helmholtz type mechanism. Then various structures of complex
flows appear successively as Re is increased. Nore et al. (2004) extended this work to
slightly larger aspect ratios, i.e. R ∈ [0.5, 1.5]. Again by means of a three-dimensional
computational code, they find that for exactly counter-rotating disks (s = −1), the
steady non-axisymmetric modes are the most unstable, but that the critical tangential
wavenumber increases with the aspect ratio R. In an attempt to connect the unsteady
three-dimensional solutions calculated with experimental observations (e.g. Gauthier
et al. 2002; Schouveiler et al. 1999), they also examine the instability to axisymmetric
disturbances, but find that for this range of aspect ratio their threshold is always higher
than that of the non-axisymmetric modes, thus highlighting the importance of R for
the selection of the most unstable modes. Moisy et al. (2004) studied both numerically
and experimentally, an even broader range of aspect ratios: R ∈ [2, 21]. Their work
was, however, limited to the boundary-layer type flow (i.e. with relatively high rotation
rate) and, following Gauthier et al. (2002), they considered only configurations in
which the sidewall rotates with the higher disk and thus the flow no longer closely
resembles von Kármán swirling flows. They also found that instabilities are always
of the Kelvin–Helmholtz type and that the curvature effects play only a minor part.
Several instabilities of polygonal forms similar to those described by Lopez et al.
(2002) and surrounded by a set of spiral arms, similar to those initially described by
Gauthier et al. (2002), are calculated.

Instabilities in rotating flows can appear with several patterns according to the
imposed conditions. In the particular case of rotating cavities, self-similar solutions
may closely represent the flow when the aspect ratio R is high enough and when the
edge effects are small enough. Then, instabilities in a cavity can be predicted well in the
framework of linear stability theory. It is thus justified, as an initial stage, to examine
the von Kármán swirling flow stability with respect to axisymmetric disturbances.
It is necessary, however, to bear in mind that the flow can also be destabilized by
three-dimensional disturbances, and this is undoubtedly the case when R is small,
even if the boundary value of R remains to be determined.

This paper is devoted to the loss of stability of an incompressible viscous fluid
flow between two parallel coaxial disks. In § 2, it is shown that self-similar solutions
become locally unstable for very moderate Reynolds-number values, long before the
formation of the boundary layers. After a short introduction to the method used, the
general characteristics of temporal and then spatio-temporal instability between co-
and counter-rotating disks are presented. The study is limited to the first bifurcation
of the solutions within the framework of axisymmetric disturbances and establishes
a connection between the critical Reynolds number and the rotation rate s ∈ [−1, 1[.
Then in §3, the characteristics of the solutions found to be unstable in the case of
infinite disks are compared with the corresponding solutions (calculated by DNS)
in a realistic interdisk cavity, i.e. between disks limited by a fixed sidewall. The
particular case R = 15 and s = −1 is examined in more detail and the calculations
compared with experimental results. Finally § 4, reports the conclusions of this
work.

2. Von Kármán flow between two rotating disks
The disks are modelled as two infinite planes with a gap width e∗, rotating around

a common vertical axis z∗ at a constant angular velocity ω∗(z∗ = e∗) and sω∗(z∗ = 0)
with s ∈ [−1, 1[, respectively. The origin of the cylindrical coordinates (r∗, θ, z∗) is
located at the lower disk centre. The steady basic flow is given by von Kármán’s exact
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similarity solution to the Navier–Stokes equations. The approach used here is similar
to that indicated by Lingwood (1995); the stability is examined locally by imposing
infinitesimal disturbances at a distance r∗

p from the origin on the basic flow. Both
basic flow and disturbances are assumed to be axisymmetric.

The length, velocity, time and pressure are non-dimensionalized by e∗, e∗ω∗,
1/ω∗ and ρ∗e∗2

ω∗2, respectively. The equations governing the problem show three
dimensionless parameters: Re = ω∗e∗2

/ν∗, s and rp = r∗
p/e∗. Near the loss of stability

of the basic flow (v̄, p̄), the instantaneous non-dimensional velocity and pressure are
given by:

v(t, r, z) = v̄(r, z) + ṽ(t, r, z),

p(t, r, z) = p̄(r, z) + p̃(t, r, z),

where ṽ and p̃ are small perturbation quantities.
The boundary conditions (u, v, w are radial, tangential and axial velocity compo-

nents, respectively) are:

u (z = {0, 1}, r, t) =w (z = {0, 1}, r, t) = 0,

and

{
v (z =0, r, t) = sr with s ∈ [−1, 1[,
v (z =1, r, t) = r,

By setting:

v̄(r, z)

⎧⎨
⎩

ū(r, z) = rf ′(z),
v̄(r, z) = rg(z),
w̄(r, z) = −2f (z),

p̄(r, z) = r2h(z) + l(z), (2.1)

the steady Navier–Stokes equations are reduced to a system of well-known non-
linear ordinary differential equations. Their solutions give the f (z), g(z), h(z) and l(z)
functions.

The perturbation quantities are assumed to have normal-mode form:

ṽ(t, r, z)

⎧⎨
⎩

ũ= û(z) exp [i(kr − σ t)],
ṽ = v̂(z) exp [i(kr − σ t)],
w̃ = ŵ(z) exp [i(kr − σ t)],

p̃ = p̂(z) exp [i(kr − σ t)], (2.2)

with σ = σr + iσi and k = kr + iki

Substituting (2.1) and (2.2) into the unsteady Navier–Stokes equations and
linearizing with respect to the perturbation quantities ũ, ṽ, w̃ and p̃, gives the system
(2.3) with the parallel-flow approximation near rp (the limitations implied are detailed
in Lingwood 1995; Healey 2004). The parallel-flow assumption is usually introduced
in the framework of flows that are stricly invariant with respect to streamwise
translations. It has been applied to spatially developing flows by assuming that
they remain pertinent locally at each streamwise station. It may be used for slowly
spatially developing flows if the flow displays two distinct well-separated length scales,
as justified by Huerre (2000). These concepts can be extended to the study of flows
in confined geometry insofar as the disturbance wavelength is small in front of the
cavity’s radial extension and a fortiori for an infinite radial extension disk system. This
assumption implies that the results are restricted to the local stability characteristics
of the flow.
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Figure 1. Profiles of (a) real and (b) imaginary parts of v̂ and ŵ for s = −1, Re = 20;
krc = 2.552, Tc = 2.66 and rpc = 12.05.

(a) (b)

Figure 2. Instantaneous contours of (a) the real part of ṽ and (b) streamfunction ψ̃ , over
one wavelength for s = −1, Re = 20; krc = 2.552, Tc = 2.66 and rpc = 12.05.

The system to be solved is written:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−iσ û + ikf ′ûrp + ûf ′ − 2f û′ + rpf ′′ŵ − 2gv̂ = − ikp̂ +
1

Re

[
− k2û+

ikû

rp

− û

r2
p

+ û′′
]
,

(2.3a)

−iσ v̂ + ikf ′v̂rp + gû − 2f v̂′ + g′rpŵ + f ′v̂ + gû =
1

Re

[
− k2v̂ +

ikv̂

rp

− v̂

r2
p

+ v̂′′
]
,

(2.3b)

−iσŵ + ikf ′ŵrp − 2f ŵ′ − 2f ′ŵ = −p̂′ +
1

Re

[
− k2ŵ +

ikŵ

rp

+ ŵ′′
]
, (2.3c)

û

(
ik +

1

rp

)
+ ŵ′ = 0, (2.3d)

Boundary conditions:

û(z = {0, 1}) = v̂(z = {0, 1}) = ŵ(z = {0, 1}) = 0,

The elimination of the pressure p̂ and the use of the continuity equation (equation
(2.3d)) lead to a system of linear equations whose eigenfunctions are v̂ and ŵ. The
solution of this system for the parameter values considered gives the characteristics
of the modes which destabilize the basic flow {v̄(r, z), p̄(r, z)}.

2.1. Temporal stability (ki = 0)

For each Re and s value, the lowest rpc value of rp for which an unstable mode appears,
characterized by a pair (kr, σ ) with Im(σ ) = σi =0, was investigated. Figure 1 shows the
real and imaginary parts of v̂ and ŵ corresponding to the onset of the unstable mode
for the rotation ratio s = −1. For this particular case, for all Reynolds numbers studied
(Re � 50), there are disturbances, reflection-symmetric in the plane z = 0.5 for v̂ and ŵ,
which destabilize the basic flow. The disturbances ṽ and p̃ appear as centrifugal travel-
ling waves. For instance, for s = −1 and Re =20, the basic flow is stable for r < rpc =
12.05. At this rpc threshold value, the most unstable mode has period Tc = 2.66 and
wavenumber krc = 2.552, which corresponds to a wavelength λc = λ∗

c/e
∗ =2.46. For

this particular case (s = −1, Re = 20), figure 2 shows the contours of ṽ and ψ̃ at a
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Re rpc krc Tc λc = λ∗
c/e

∗

3 341.36 2.252 0.540 2.79
5 125.66 2.270 0.885 2.77
6 88.58 2.282 1.051 2.75
7 66.24 2.296 1.211 2.74
8 51.73 2.312 1.364 2.72
9 41.79 2.326 1.512 2.70

10 34.68 2.346 1.652 2.68
12 25.42 2.384 1.911 2.64
15 17.87 2.448 2.244 2.57
20 12.05 2.552 2.659 2.46
25 9.43 2.646 2.922 2.38
30 8.07 2.710 3.065 2.32
40 6.86 2.764 3.118 2.27
50 6.44 2.746 3.020 2.29

Table 1. Critical radius rpc and characteristics of the first unstable mode between two coaxial
exactly counter-rotating disks (s = −1) as a function of the Reynolds number.
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Figure 3. Neutral stability curves (σi = 0). Local critical radius rpc as a function of Reynolds
number Re for different rotation ratios s.

given time. Table 1 gives the characteristics and critical radius rpc for the first unstable
mode as a function of the Reynolds number, for exactly counter-rotating disks s = −1.

For the s �= −1 values, the spatial distribution of û, v̂ and ŵ ceases to be as simple,
but the first unstable modes are always centrifugal travelling waves. There is generally
one mode which destabilizes the basic flow first, but for certain values of Re and s,
two unstable modes (characterized by two different values of kr and σr ) appear for
the same critical value rpc; this particular case will be detailed further.

The neutral stability curves are presented in figure 3. The critical local radius rpc is
plotted as a function of Re for different values of the rotation ratio s. For the range
of Reynolds numbers studied here (Re � 50), the destabilization of the basic flow
always occurs by the intermediary of a centrifugal wave for which the wavenumber
krc varies with the Re and s values. These curves of neutral stability show behaviours
which differ greatly depending on the value of the rotation ratio s.

Figures 4, 5 and 6 complete the description of the instabilities by representing the
evolution of the critical wavenumber krc as a function of Re. The disturbances can
then be classified into three families.
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Figure 4. Neutral stability curves (σi = 0). Critical Reynolds number Re plotted against the
critical wavenumber krc for different rotation ratio families (a) s ∈ [−1, −0.56] and (b)
s ∈ [0, 0.75].
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Figure 5. Neutral stability curves (σi =0). Critical Reynolds number Re plotted against the
critical radius rpc for s = −0.25.

When the disks are strongly counter-rotating (i.e. s ∈ [−1, −0.56]; cf. figure 4a) the
basic flow is destabilized by a disturbance with a critical wavenumber which evolves
slightly as Re increases, but increases when s tends towards −1.

When the disks are co-rotating (i.e. s ∈ [0, 1]; cf. figure 4b) the critical wavenumber
of the disturbance does not always evolve monotonically with Re. In the boundary
case s = 0, the critical wavenumber varies slightly, passing from krc = 2.84 with Re =3,
to krc = 2.52 with Re =50. The disturbance’s characteristics are similar (same rpc and
krc) to those described by San’kov & Smirnov (1992) for low Re values. On the other
hand, for higher values of the rotation ratio, the evolution of krc with Re is much
more noticeable (e.g. krc ∈ [0.96, 2.8] for s = 0.5) and beyond a particular value of
Re, the evolution of krc ceases to be monotonic. This change of behaviour could be
attributed to the onset of boundary layers on the disks.

For intermediate values of the rotation ratio (i.e. −0.56 <s < 0), the evolution of the
critical wavenumber with the parameters Re and s is appreciably more complicated.
Indeed, as previously mentioned, there is thus for each value of s ∈ ]−0.56, 0[, a
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Figure 6. Neutral stability curves (σi = 0). Critical Reynolds number Re plotted against the
critical wavenumber krc for s ∈ ]−0.56, 0[.

Type I Type II

s r•
pc Re• k•

rc T •
c k•

rc T •
c

−0.15 27.295 51.69 3.148 1.1804 1.2672 1.3702
−0.20 28.285 44.34 3.154 1.2766 1.2658 1.3712
−0.25 29.765 38.00 3.158 1.3597 1.2600 1.4448
−0.30 32.215 32.23 3.162 1.4555 1.2486 1.4133
−0.35 36.360 26.72 3.158 1.5429 1.2310 1.4400
−0.40 44.030 21.36 3.156 1.5511 1.2090 1.3462
−0.45 60.700 16.00 3.158 1.4457 1.1832 1.2624
−0.50 109.405 10.63 3.166 1.3052 1.1640 0.9572
−0.55 1397.750 2.66 3.182 0.3819 1.1380 0.2921

Table 2. Particular values Re•, for which two unstable modes appear with different
wavenumbers for the same local radius r•

pc

particular value Re•(s) for which two unstable modes appear for the same r•
pc value

of the local radius. These modes (cf. figure 6) are characterized in particular by very
different k•

rc values. Type I has a relatively large wavenumber k•
rc, about 3.2, whereas

type II has a much smaller wavenumber, about 1.2. The main results are indicated
in table 2 for the s values concerned. It can be seen that there are few differences
between the critical periods T •

c of both types, except for the low Re• values. As an
example, figure 5 details the loss of stability of the basic flow in the case s = −0.25.
For the case considered, Re•(s = −0.25) = 38.00 and r•

pc = 29.8 (cf. table 2), for each
value of Re <Re•, there is a value rI

pc(Re) > r•
pc, for which the basic flow is initially

destabilized by a mode of type I. For instance, for Re = 36, rI
pc = 30.45, kI

rc = 3.116;
for Re = 34, rI

pc =31.195, kI
rc = 3.078. The flow is also destabilized by a type II mode,

but this occurs for a value rII
pc > rI

pc.
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For Re = Re• = 38.0, both modes I and II destabilize the basic flow at rI
pc = rII

pc = r•
pc.

For Re >Re•, there is initial destabilization by a type II mode, which occurs with
a value rII

pc lower than the rI
pc value for which the type I mode is destabilized. For

instance, for Re = 39, rII
pc = 28.245, kII

rc =1.302; rI
pc =29.495, kI

rc =3.18; for Re = 40,

rII
pc = 26.875, kII

rc = 1.34; rI
pc = 29.205, kI

rc = 3.202. Figure 6 shows all of the results for
−0.56 <s < 0. For each of these s values, the process is the same as that described in
detail above: for Re < Re•(s), the flow is destabilized by a type I mode with a relatively
large wavenumber (e.g. kr c = 3.12 for s = −0.5 and Re = 3), then, as the Reynolds
number increases until it reaches Re•(s), the disturbance wavenumber evolves until
reaching the particular value k•I

rc (e.g. k•I
rc = 3.166, Re• = 10.63). For these same values

of Re• and r•
pc, a second disturbance (type II) appears with a lower wavenumber

(k•II
rc = 1.164, Re• = 10.63). For Re >Re•, it is this second disturbance which first

destabilizes the flow as rp is increased outwards. All of the particular points k•I
rc (Re•)

and k•II
rc (Re•) are indicated in thick dotted lines in figure 6.

Table 2 gives some parameter values for which two disturbances of different
wavenumbers appear at the same local radius.

2.2. Spatio-temporal stability (ki �= 0)

As shown above, the von Kármán swirling flow between two infinite coaxial disks can
become unstable from a critical fixed radius for a low Reynolds number (Re � 50).
Lingwood (1995, 1996) showed that, in the case of the boundary layer over a disk
rotating in otherwise still fluid, the flow becomes absolutely unstable beyond a
certain radius. The wave packet which destabilizes the basic flow consists of two
families of travelling waves. Taking into account similarities existing between the case
investigated by Lingwood and the case examined here, the question of the nature
of the instability (convectively unstable CI or absolutely unstable AI) highlighted in
§2.1 arises. By examining the behaviour of disturbances with complex wavenumber
(k = kr + iki with ki �= 0) and by applying the Briggs–Bers criterion (cf. Huerre &
Monkewitz 1990; Delbende, Chomaz & Huerre 1998) for the critical values rpc(Re),
we found a saddle point corresponding to a pinching point of the two branches k+

and k− (according to the notations of the above-mentioned authors). The value of
σ �

i at this saddle point determines the nature CI or AI of the instability. However,
for the critical values indicated § 2.1, the values of σ �

i are very slightly negative (cf.
figure 7a: σ �

i (Re = 25, s = −1, rp = rpc = 9.43) ≈ −9.1×10−5). The aim is thus to study
the sensitivity of σ �

i as a function of rp: is there a change in the sign of σ �
i for an r�

p

value slightly higher than rpc?
By carrying out computations similar to those presented in figure 7(a), but for

the value rp =9.55 (that is to say an increase of less than 2%), the value of
σ �

i (Re = 25, s = −1, rp = rpc =9.55) became positive (cf. figure 7b): σ �
i ≈ 2.91 × 10−4.

Although this is not a systematic study of all rpc(Re, s) cases, the same type of
result was found for the few cases treated. The flow is absolutely unstable locally
and it is known (cf. Huerre & Monkewitz 1990) that this can lead to the onset of a
global unstable mode. It thus seems that, for the values of Re � 50 considered, this
conclusion can be generalized for all s ∈ [−1, 1[ values. Of course, for values much
higher than rpc, the present linear stability analysis is no longer valid and cannot give
any indication, because of the usual nonlinear superposition of all of the unstable
modes.

An interesting case is that corresponding to s ∈] − 0.56, 0[, for which, for an
identical Re value there are two modes which destabilize the basic flow with the
same r•

pc. Figures 7(c) and 7(d) present examples of results obtained for Re• =38 and
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Figure 7. Contours of σi in the complex (kr , ki) plane. Locus of the saddle point σ �
i with

Re = 25 and s = −1. (a) σ �
i (rpc = 9.43) ≈ −9.1 × 10−5 < 0. The flow is CI. (b) σ �

i (rp = 9.55) ≈
2.91 × 10−4 > 0. The flow is AI. Locus of the saddle point σ �

i with Re� = 38 and s = −0.25.

(c) σ �
i (r•

pc = 29.77) ≈ −1 × 103 < 0. The flow is CI. (d) σ �
i (rp = 30.5) ≈ 1.6 × 10−5 > 0. The flow

is AI.

s = −0.25. The preceding temporal stability study showed that for these parameter
values, the basic flow is destabilized from r•

pc = 29.77 by two modes (Types I and II)

with wavenumbers k•I
r =3.158 and k•II

r = 1.26, respectively. Figure 7(c) shows that
for r•

pc = 29.77, the flow is convectively unstable (σ �
i < 0) with respect to the type I

disturbance (the wavenumber k•
r corresponds to that given by the temporal analysis

for type I instabilities). Figure 7(d), on the other hand, shows that starting from
rp = 30.5, the flow becomes absolutely unstable (σ �

i > 0) with respect to the same type
I disturbance. The local radius of transition AI/CI is thus very close, less than half
a wavelength, to the local critical radius rpc = 29.77 from which the von Kármán
swirling flow becomes unstable. On the other hand, the basic flow is convectively
unstable only with respect to type II disturbances.

3. Cavity flow
It remains to be determined whether the loss of stability of the self-similar solutions

calculated above subsists in the case of a finite physical problem, i.e. for a realistic
shrouded disk system of finite radial extension. More precisely, the destabilization
of the self-similar solutions is compared here with the conditions of appearance of
unsteady flows in a cavity consisting of two coaxial disks enclosed in a stationary
sidewall.

3.1. Implementation

The integration of the axisymmetric non-stationary Navier–Stokes equations was
carried out by means of a pseudospectral computational method of collocation,
associating spatial approximations in the form of a truncated series of Chebyshev
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Figure 8. Sketch of the tangential velocity variation between the two rotating disks and the
fixed sidewall for s = −1. The connection of the velocity from the rotating disks to the zero
velocity at r = R was carried out by continuity through a small radial gap ε.

polynomials with a temporal discretization by second-order finite differences. This
scheme showed, in similar conditions, its aptitude to highlight instabilities in cavity
flows (see Cousin-Rittemard et al. 1998, 1999). In addition to the three parameters
on which the flow depends (Re, s, R), it is necessary to examine the way in which
the tangential velocity decreases to zero from the rotating disk to the fixed sidewall
through a small radial gap ε at r = R. It was first imposed that the tangential velocity
vary linearly in z between the higher and the lower disk (ε = 0). The boundary
condition of the tangential component is then:

∀z ∈ [0, 1] v(R, z) = (1 − s)Rz + sR, (3.1)

Then, in a more realistic way, the connection of the velocity from the rotating disks
to the zero velocity at r = R was carried out by continuity through a small radial gap
ε (cf. figure 8). The size of this space was taken as equal to ε = 0.008R in agreement
with the value fixed in the experimental device described further and corresponding
to the particular case R = 15. These conditions are written:

∀t

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

at r = R; z ∈ [0, 1] ; v = 0,

at r = R − ε;

⎧⎪⎨
⎪⎩

z = 0; v = s(R − ε)
∂v

∂r
= s,

z = 1; v = R − ε
∂v

∂r
= 1,

(3.2)

A suitable description of this region requires an increased radial resolution, denser
near the periphery. The Gauss–Lobatto grid used is well suited since it generates an
increased density of points in the boundary regions. Practically no difference was ob-
served in the critical values of the parameters or in the corresponding flow structures.

3.2. Results

Several values of the aspect ratio were studied, but mainly the results relating to the
aspect ratio R = 15 will be presented.

3.2.1. A priori estimation of the critical Reynolds number in a cavity

In the case of infinite disks, previous results show that, for fixed s, there is a relation
Re(rpc). For a cavity of given aspect ratio, the critical value of Re can be estimated by
comparing rpc with R. It seems clear that, for fixed Re, instability cannot be observed
if rpc >R (by assuming that the destabilization mechanism of the flow is the same in
a cavity and between infinite disks). For example, for s = −1, the self-similar solution
threshold Re(a)

c (rpc = R = 15), is Re(a)
c ≈ 17.5.
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s −1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7
Re 20 20 20 20 25 30 33
rl/R 0.85 0.75 0.70 0.67 0.64 0.63 0.61

Table 3. Estimation of the region r � rl where the self-similar solutions represent correctly
the flow in a cavity of large aspect ratio (R =15). The local radius rl indicates the radial
position from which the maximum value of the axial velocity w deviates by more than 5%
compared to the maximum value of w given by the self-similar solutions. Beyond this radius
the self-similar solutions are no longer valid in the cavity. These values correspond to a steady
flow, just before the unsteady onset.
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UnsteadySteady
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Rec
(a) (rpc = R)
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Figure 9. Neutral stability curves s(Re) of von Kármán self-similar solutions (- - -) and in an
R =15 aspect ratio cavity (—).

The numerical integrations carried out in a cavity of aspect ratio R = 15 confirm
that for Re = 17.5 the flow remains steady, whatever the conditions imposed on the
sidewall. The comparison between the steady flow field velocity computed in the
cavity and the velocity flow field given by the self-similar solutions shows a very
good agreement in the entire cavity, except in a peripheral region whose radial extent
rl ∈]0, R] varies with s and Re (cf. table 3).

If, as appears probable, destabilization in the cavity should occur at the radius rl ,
the curves plotted in figure 3 make it possible to deduce the critical Re value; for
example, in the particular case s = −1, R = 15 : Re(b)

c (rpc = rl = 12.75) ≈ 19.4. Using
the same method for s ∈ [−0.95, −0.7], the values Re(a)

c and Re(b)
c can be deduced

and are represented in figure 9.
In a cavity, the instability threshold is detected by flow behaviour observation at

several points located in the cavity mid-plane (z = 0.5) and at various r values. The
level of the disturbances is an increasing function of r until the vicinity of the sidewall
(r ≈ rl), where it falls rapidly to zero.

For given s and R, by measuring the maximum disturbance level as a function
of Re, the critical value Rec corresponding to the destabilization of the basic flow
can be detected. This loss of stability occurs via a supercritical Hopf bifurcation.
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Figure 10. Structure in the meridional plane of the tangential velocity disturbance in a cavity
of aspect ratio R = 15; contours of ṽ over a period (the time increases from top to bottom
with an increment of 0.38) for Re = 21 and s = −1. The axis is on the left and the sidewall on
the right of each figure.

Near criticality, the square of the disturbance level varies linearly with Re. This
property makes it possible to calculate precisely the critical Reynolds number Rec by
calculating the disturbance level for Re values very slightly above Rec, this critical
value is obtained by extrapolation. For the flow studied here, this vicinity is restricted
because of the very strong increase in the instability level with Re. The critical Rec

values thus obtained in the cavity are also plotted in figure 9 and are represented by
(◦). A good coincidence between the Re(b)

c values and those of the cavity can be seen;
this shows that the loss of stability of cavity flows (for sufficiently large R) is predicted
well by the temporal linear stability analysis of the self-similar solutions (disks of
infinite radial extent), provided that the stabilizing effect of the sidewall is taken into
account. In addition, figure 3 shows that, for all s, the flow in cavities of small aspect
ratio R is not destabilized by axisymmetric modes (the critical radius rpc being higher
than the cavity length R). Computations for cavities of different aspect ratios showed
that the lower limit of axisymmetric instabilities onset may be estimated at R ≈ 10.3.
This is in agreement with reports that for relatively small aspect ratios the thresholds
of axisymmetric instabilities are higher than those of non-axisymmetric modes.

3.2.2. Structure and properties of instabilities in cavity

At the loss of stability of the basic flow, the disturbances consist of centrifugal
travelling waves, as described in §2.1. As an example, figure 10 shows the temporal
evolution over one period of the disturbance ṽ(t, r, z) for R = 15, Re =21 and s = −1.
Except in the vicinity of the sidewall, it can be seen that the instability structure
in the cavity is identical to that of the self-similar solutions (cf. figure 2). In the
same way, excellent coincidences can be seen between the critical periods and
wavelengths of the cavity instabilities and the instabilities between disks of infinite
extent (s = −1, R = 15, Re = 21 : T cav

c = 2.64, T R∞
c = 2.62; λcav

c = 2.5, λR∞
c =2.44).

However, there is an essential difference between computations in cavity and the
results of §2.1: the disturbance level is a function of r in the case of the cavity.
Figure 11(a) shows the dependence of ṽ(t, r, z =0.5) on r for R =15, s = −1, Re = 21,
as well as the associated envelope of its temporal fluctuations. It is seen that the
disturbance level tends very rapidly towards zero when r → 0, but a thorough
examination of this behaviour reveals that the disturbance level decreases in a very
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Figure 11. Level of the tangential component of the instability ṽ(r, z = 0.5, t) as a function
of radius for R = 15, s = −1 and Re =21. (a ) Instantaneous evolution of v̄(t)(· · ·  · · ·) and the
associated envelope of its temporal fluctuations. (b) Maximum of v̄(t) temporal fluctuations.

distinctive way (cf. figure 11b). This characteristic is connected with results previously
mentioned in §2.2: the presence of an absolute instability region very close to the
critical radius where the destabilization of the basic flow occurs has been shown. This
consolidates the idea that instability in a cavity is due to a global unstable mode (cf.
Huerre & Monkewitz 1990), so that the destabilization of an axisymmetric basic flow
in a cavity of large aspect ratio can be considered in the following way for R � 1
and a given s value.

(i) As long as Re < Re(b)
c (rl), the unsteady disturbances are destroyed with time;

the flow is stable.
(ii) For Re =Rec ≈ Re(b)

c (rl), even an infinitesimal disturbance at r = rl , will generate
a global mode filling the whole cavity.

3.2.3. Stability diagram (R =15).

The stability diagram in figure 12 shows the values (Rec, s) for which the axisym-
metric basic flow loses its stability with respect to axisymmetric disturbances. The
flow then becomes unsteady for a wider range of Re values as s approaches −1 (the
case of exactly counter-rotating disks). For the lowest Rec values, the branch of the
diagram reproduces that indicated in figure 9 with (◦). Because of the stabilizing effect
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Figure 12. Stability diagram for axisymmetric modes in cavity (R = 15).

of the sidewall and since a decreasing proportion of the flow resembles the self-similar
solutions in the cavity as s and Re increase (cf. table 3), it can be seen that the basic
flow remains stable for all Re for −0.74 � s � 0 and that there is a return to steady
flow for −1 � s � −0.74 as Re increases. However, this return to steady flow occurs
in a different way, as a function of the s value.

For s ∈ ] − 1, −0.74], the steady solution is of a similar type on both sides of
the area delimiting the onset of the unsteady solution. These solutions belong to
the branch described by Szeto (1978) for the similar problem between infinite disks.
The destabilization, and the return to steady flow as the Reynolds number increases,
occur via two supercritical Hopf bifurcations. In contrast, if s = −1, the evolution
is much more complicated, as will be detailed further. First, there is a supercritical
Hopf bifurcation at Re =20.7, which leads to transition from the steady solution of
Stewartson (1953) (symmetric with regard to the midplane between the disks for u

and antisymmetric for v and w) to a periodic solution (which preserves, on average,
the basic flow properties), and secondly, the return to a steady solution which occurs
by means of a subcritical bifurcation. This leads to two steady solutions, having lost
the symmetry properties of the initial stable solution.

These two steady solutions then become unstable for Re = 125.2. The new solution
appears as quasi-stationary waves in the whole cavity where the velocity and pressure
fields oscillate periodically at each point. As s tends towards zero, this area of
instability joins that already highlighted in the rotor–stator configuration and which
corresponds to a boundary-layer-type instability (cf. Jarre, Le Gal & Chauve 1991,
1996; Schouveiler et al. 1998, 2001; Gauthier et al. 1999). The passage from one type
of instability to the other, as s increases from −1 to 0, is still not completely elucidated.
The remainder of this paper is restricted to the description of the main characteristics
of the first unsteady area in figure 12 (i.e. up to Re = 120), with particular attention
to the s = −1 case which corresponds to the most complex situation.

3.2.4. Unsteady stable solutions (R = 15, s = −1)

Figure 13 shows the amplitude of the tangential velocity component fluctuations
v, monitored at (r = 0.7, z = 0.5), as a function of Re. As already observed for low
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Figure 13. Amplitude of the tangential velocity component v(t) as a function of Re at
(r = 0.7, z = 0.5) for R = 15 and s = −1.

Re values, the axisymmetric basic flow remains stable with respect to axisymmetric
disturbances, in agreement with the results of Szeto (1978) for the steady self-
similar solutions. At Rec = 20.7, the basic flow becomes unstable and the associated
bifurcation is a Hopf supercritical as previously mentioned. For 20.7 � Re � 50, the
disturbance has the same structure (centrifugal travelling waves with a basic period
T0 and a phase velocity increasing with Re). The fluctuation amplitude also increases
with Re and passes through a maximum in the vicinity of Re = 40, at which point
v(t)(r = 0.7, z = 0.5) reaches 75% of the tangential velocity of the disk at the same
radius.

From Re = 65, significant modifications appear in the spatio-temporal evolution of
the flow. When Re reaches 70, the travelling waves are affected by deformations in
almost the whole field, with dislocations near the periphery. In the vicinity of Re = 100,
the level of the disturbance is minimal. There is almost no further propagation, except
by means of dislocations near the sidewall. From Re = 111, the evolution of v at the
monitored point is similar to a periodic signal and the level of the disturbance
becomes maximum for Re close to 112. Beyond this value, a rapid decrease with
Re can be observed in the level of the disturbance. Moreover a qualitative change
could be observed in the density power spectrum evolution of the time-dependant
solution with the occurrence of period-doubling oscillations. The spectrum shows
the presence of an f0/2 subharmonic and several linear combinations mf0 + nf0/2
(f0 = 1/T0 is of the order of 0.56). It can thus be conjectured that the structure’s loss
of stability is achieved by a subcritical bifurcation with hysteresis.

3.2.5. Return to stationarity (R = 15, s = −1).

When Re =114, a sudden change takes place, which leads to a steady solution after a
very long transient evolution (figure 14). In fact, two steady solutions can be obtained.
These two solutions S1[u1(r, z), v1(r, z), w1(r, z)] and S2[u2(r, z), v2(r, z), w2(r, z)] are
related by simultaneous reflection in tangential θ and in axial z-coordinates.

These solutions are similar to those found by Szeto (1978) for Re � 119.4 in the
case of disks of infinite radial extent. As Re increases, these solutions remain stable
until Re = 125.2 where a Hopf bifurcation leads to an unsteady solution.
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Figure 14. Time series of the tangential velocity component v(t) at (r = 0.7, z = 0.5) for
R = 15, s = −1 and Re = 114. Final steady solution.
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Figure 15. Time series of the tangential velocity component v(t) at (r = 0.7, z = 0.5) for
R = 15, s = −1 and Re = 104.5. Final unsteady solution.

3.2.6. Nature of the bifurcation between Re = 113.8 and Re = 114

From one or the other of the two solutions obtained for Re � 114, decreasing
Re leads to a solution which remains steady. Obtaining such solutions is possible
while decreasing Re to 105. On the basis of the solution thus obtained for Re =105
as initial solution, and by carrying out integration for Re = 104.5, the corresponding
unsteady solution is found after very long transients (cf. figure 15). The signal is then
quasi-periodic with a spectrum showing a few characteristic frequencies which can all
result from two basic frequencies: f0 = 0.643 (T0 = 1.554) and fl = 0.007 (Tl = 139).
The most energetic frequencies are f0 and (f0 + fl)/2, the latter being very close to
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Figure 17. Experimental device.

the subharmonic f0/2. There is thus, between Re = 105 and Re = 113.8, the possibility
of obtaining three different stable solutions:

an unsteady solution which becomes unstable for Re > 113.8;
two steady solutions with characteristics as described above.
This comes from the subcritical character of the associated bifurcation which is

shown in figure 16 where the average value v̄ of the tangential component at the
monitored point is plotted for each solution as a function of Re.

3.3. Experimental results in a cavity with R =15 aspect ratio

The existence of the primary bifurcation, indicating the loss of stability of the basic
flow and the onset of an unsteady disturbance, is investigated experimentally for
the particular case, s = −1, R = 15. The working fluid is water of kinematic viscosity
ν∗ = 10−6 m2 s−1 at 20 oC and the Reynolds number is controlled to within 2%. The
experimental set-up (figure 17) consists of two coaxial glass disks, R∗ = 150 mm radius
and e∗ = 10 mm gap width. Each disk is mounted on a vertical drive shaft which,
through a system of waterproof ball bearings, can rotate inside an Altuglas housing
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enclosure. Disks are driven independently of each other by electronically regulated
electric motors.

Velocity measurements have been taken by means of a laser doppler velocimetry
system. This consists mainly of a 35 mW He-Ne Laser (Spectra-Physic), an optical
system with a Bragg cell and a front lens (300 mm focal length), and a signal processor
(Dantec). A frequency shift is superposed by the Bragg cell onto one of the two beams
to allow the measurement of very weak or reversing flows. Because of the characteristic
time of the expected disturbance (the calculation indicated a dimensional period of
about 10 s) it is necessary to sample data during a sufficiently long period, and
particular care must be given to the quality of the seed particles. Because of the dioptric
effect formed by the curved surfaces of the housing and also by the rotating disks, the
optical beam access within the flow field is very limited. The tangential component
was measured because it was easier to obtain. The probe measure was placed at
r = 12 and z = 0.42. Figure 18 represents the evolution, as a function of time, of the
tangential velocity component. Up to Re =22, no characteristic frequency is released;
only noise is visible on the figure owing to the difficulty in measuring very low velocity,
about 1 mms−1. The mean value of the velocity is equal to that of the self-similar
solutions. For Re =23, the appearance of a periodic fluctuation of the velocity at the
measuring probe can be clearly seen. It is difficult to measure the slight oscillation
amplitude increases when the Reynolds number increases because of the noise on the
signal. Oscillations cease to be mono-periodic from Re = 25, which can be attributed
to the contamination of the zone in which the probe volume is situated by three-
dimensional disturbances observed near the sidewall, which will be described further.
Beyond Re = 30, the signal enriches by many frequencies and its fluctuations become
more complicated, but the average value remains that given by self-similar solutions.

Visualizations of the flow have been obtained by laser sheets in horizontal and
meridional planes. The light emitted by an argon laser (Spectra-Physics 2016) was
transmitted by an optical multimode fibre to an optical system of light-sheet genera-
tion. The flow was seeded with particles of titanium dioxide (TiO2), and photographed.

Visualizations in meridional planes have been found particularly difficult to obtain
because of the strong tangential component of the main flow velocity. The length
of time the particles stay in the illuminated zone is thus very short, preventing the
recording of the trace of the perturbation sought in the visualization plane. To remedy
this problem, the illuminated zone ( ≈ 3 mm) was widened so as to take into account
axial and radial components of the particle paths. Visualizations in a plane parallel
to the disks are easier to obtain. For s = −1, the axial and tangential components
of the flow mean velocity are zero at z = 0.5, and thus the particles remain in the
visualization plane long enought for their paths to be followed.

Figure 19 shows good agreement between the computed streamlines (figure 19a)
and the experimental flow visualization (figure 19b) in the meridional plane. The
visualization shows an example of particle paths obtained for Re = 26, z ≈ 0.5. The
higher and lower parts of the visualization correspond to the two rotating disks.
The fixed sidewall is on the right-hand side, but the centre of the cell is not included
in the picture, thus only a part of its radial extent is represented. The trace of an
unsteady structure can be observed in the centre of the picture and its wavelength
can be evaluated to approximately λ=2.3, which is very close to the value λ= 2.5
predicted by calculations. The right-hand side of the figure, close to the fixed sidewall,
shows more complex disturbances; their patterns vary as a function of time. The
figure shows good agreement between calculations (figure 19a) and visualizations
(figure 19b).
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Figure 18. Tangential velocity v(t) measurements as a function of the dimensionless time
t = ω∗t∗ for different Re with r = 12; z = 0.42; s = −1; R = 15.

As previously stated, visualizations in a midplane parallel to the disks are easier
to obtain. For s = −1, the particles at z = 0.5 remain in the light sheet long enough
for their trajectories to be observed without too much difficulty. Observation shows
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(a)

(b)

Figure 19. (a) Meridional flow streamlines and (b) visualization. Re = 26; s = −1; R = 15.

Figure 20. Visualization and corresponding trajectory field computed in the midplane
between disks at z =0.5. Re = 26, s = −1, R =15, exposure time t∗ ≈ 1 s.

the appearance of an instability for Re = 24. This formation of a train of centrifugal
axisymmetric waves can be seen. However, the limitations imposed by the experimental
device prevent the exploration of a wide range of Reynolds numbers. Unsteady three-
dimensional disturbances, already noted in meridional views, disturb the axisymmetry
of the wave train near the fixed sidewall and this increases significantly with Reynolds
number. This loss of axisymmetry near the fixed sidewall can be attributed either to
experimental device imperfections or to the appearance of three-dimensional unsteady
disturbances beyond a critical radius. It is not possible to settle this question with
the tools used here. The best solution would be to use an unsteady three-dimensional
Navier–Stokes code to determine whether non-axisymmetric instabilities appear for
these parameter values. Axisymmetric instabilities appear in the vicinity of r/R ∼= 0.5
and displace towards the periphery while being increasingly disturbed by three-
dimensional modes. It is for Re ∈ [25, 26] that waves are easiest to observe, as they
preserve their axisymmetry in most of the area. Three-dimensional disturbances are
then very weak and not yet clearly visible; they appear randomly, close to the sidewall.

Figure 20 shows the superposition of a photograph (aperture 5.6, shutter 1s) taken
in the midplane (z = 0.5) for Re =26, and of the layout of portions of trajectories
calculated in the same plane, throughout the opening time of the camera. The two
pictures show good agreement between calculations and visualizations, even though
the experimental apparatus prevents the observation of the whole light sheet. The
photographs show the trace of the axisymmetric wavetrain in most of the field, but
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also more complex structures close to the sidewall, demonstrating the existence of the
three-dimensional effects already mentioned.

As shown in §3.2.2, axisymmetric disturbances invade the whole of the cavity (cf.
11b). Visualizations show axisymmetric instabilities only beyond r/R ∼= 0.5 because
of the necessarily limited sensitivity of the experimental technique, which does not
mean that the instabilities are not present in the whole of the cavity.

Using visualizations and velocity measurements, it is possible to calculate the
wavelength and the period of the disturbance. For Re = 26, we can estimate the wave-
length at λ= 2.3±0.2 and the period to be T =2.5±0.1. These values are in agreement
with the computations (λ= 2.5 and T = 2.63) and thus confirm the existence of
axisymmetric instabilities for very low values of Re.

4. Conclusion
We have studied the onset of the first axisymmetric instabilities between two coaxial

disks enclosed in a stationary sidewall. If the cavity thus formed is of large aspect
ratio R = R∗/e∗, the flow can be described by the self-similar von Kármán solutions
in most of the field.

These self-similar solutions are found to be unstable with respect to infinitesimal
unsteady disturbances. For moderate Reynolds number values (Re � 50) and for all
rotation ratios s ∈ [−1, 1[, there is a critical local radius rpc beyond which centrifugal
axisymmetric waves invade the entire space between the disks. In the case of slightly
counter-rotating disks (s ∈ [−0.56, 0[), two different travelling waves (i.e. defined by
two different wavenumbers and two different frequencies: types I and II) appear for
the same critical value of the local radius rpc.

A spatio-temporal stability analysis shows that for the few cases treated here, the
disturbances become absolutely unstable (AI) for values very close to the critical
radius found by temporal analysis. Although this is not a systematic study, it would
seem to indicate that this result can be generalized within the range of the examined
parameters Re � 50 and s ∈ [−1, 1[. It is known that the onset of a locally absolutely
unstable mode can indicate the existence of global instability. In the case of slightly
counter-rotating disks (s ∈ [−0.56, 0[), of the two modes found to be unstable, type
I becomes absolutely unstable (AI) (for a value very close to the critical radius r•

pc),
whereas type II remains convectively unstable (CI).

A general study would be required to analyse this behaviour for a larger range of
parameters and to try to establish a connection between the observations described
here and the destabilization of this type of flow in the boundary-layer regime.

Subsequently, direct axisymmetric computations showed that unsteady solutions,
found here in the case of infinite disks, can appear inside a cavity, that is to say
between two disks enclosed within a fixed sidewall. In order for this to be the case,
the critical radius rpc must be included in the zone where the flow can be described
by the self-similar solutions. Computations confirm the destabilization of the basic
flow by a centrifugal global mode which affects the whole cavity. This unstable global
mode has the characteristics (wavelength, period and phase velocity) of the mode
found to be unstable for the same parameter values in the case of infinite disks.

In a cavity, these instabilities are particularly difficult to calculate because of the
high value of the critical radius rpc beyond which the self-similar solutions become
unstable, and which must necessarily be included in the investigated field. It is clear
that the smaller the aspect ratio of the cavity, the higher the critical Reynolds number
must be, a behaviour which is not compatible with the maintenance in the cavity of
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a zone where the flow is well represented by self-similar solutions. Some calculations
showed that the limit at which this type of instability no longer appears on this side
may be estimated at R ≈ 1 0.3. This implies that such an instability can be observed
only in cavities of large aspect ratio R.

This work constitutes a first step which should be continued by a three-dimensional
study in order to determine if axisymmetric instabilities calculated here are actually
those which destabilize the flow or if, for at least part of the explored parameters,
three-dimensional structures coexist, or even take precedence. It is undoubtedly the
nature, AI or CI, of potential three-dimensional instabilities which would make it
possible to determine this. It could also be interesting to specify the evolution of
these instabilities as the Reynolds number increases even more. In particular, the
passage from centrifugal axisymmetric instabilities described here to axisymmetric
and three-dimensional instabilities in the boundary layers described in the literature
for higher values of the Reynolds number remains to be detailed.

Finally, an experimental study performed in a cavity of aspect ratio R = 15 confirms
the existence of an axisymmetric centrifugal disturbance for values very close to
the predictions. This experimental work should be supplemented by continuing the
exploration of the parameter ranges (i.e. Re and s) to reach notably higher Re values,
largely explored in the literature. Again, it is the connection between instabilities
presented here and the already well-known boundary-layer instabilities which remains
to be established. In addition, experimental study has highlighted the existence of
three-dimensional unsteady structures at the periphery of the disks. It would be
interesting to know, for example, following the work of Nore et al. (2006) using non-
axisymmetric computations, how the competition between all of these unstable modes
takes place and if there is a critical radius for the onset of these three-dimensional
instabilities or if, as for axisymmetric instabilities described here, their absolutely
unstable nature leads them to invade the entire cavity.

The authors wish to thank Caroline Nore, Patrick Le Quéré and Olivier Daube for
fruitful discussions. They are also grateful to Marion Paillat for having read the paper.
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